
Introduction to the Graphics Module Framework

Introduction

Unlike the C++ module, which required nothing beyond what you typed in, the graphics module
examples rely on lots of extra files - shaders, textures, and mesh files. You also need to perform
quite a lot of vector and matrix manipulation, which if coded incorrectly could cause very undesirable
rendering results! To this end, for this module you’re going to be provided with a small ’framework’,
made up of a Visual Studio solution, and some data files. Every week, you’ll get a new framework
download, which if you drop into your module folder, will add the new functionality and tutorial
folders required for that week.

Upon opening the solution file for the first week’s tutorials, you should be greeted with something
like the following:

Top Left: The contents of the solution file Bottom Left: Loading in an unloaded project Right: The
files provided by the Framework static library.

You should have 6 individual projects - 5 called Tutorial and numbered from 1 to 5, and one called
Framework. The tutorial projects don’t have much in them - as their names imply, you’re going to be
filling these with code as you go along.

The Framework project is a little bit different, though. When compiled, the Framework project
won’t create an executable, but a static library. This is a big chunk of executable code, that can
be linked into a project to add extra functionality and classes. Each of the tutorials relies on this
static library to help create an OpenGL context, and to provide math functionality such as Vector
and Matrix classes.

1



Each tutorial has its own project folder, but to start off with, only the project for Tutorial 1 is
active. To activate further tutorials, you must right click on the project, and select Reload Project -
this’ll load in the project, ready for compiling and running. Then, to select which tutorial to execute
when pressing F5, right click the desired project, and click on Set as StartUp Project.

Setting which executable to run

Maths Classes

Provided for you are some simple classes that encapsulate the mathematical constructs you’ll need in
order to manipulate the graphics data you want to draw on screen. Each of them supports operator
overloading to make their manipulation easier, including the stream operator, which will allow you
to print their values to the console. Common to all of these classes is that their member variables
are public, and so can be freely manipulated - this is to keep the code generated from these classes
optimised - it’s more trouble than its worth to try and hide data in purely numeric classes such as these.

Although each of these classes provides everything you need for this module, they’re not perfect -
constructs like vectors and matrices are ideal for optimising using SIMD extensions of modern CPUs,
which these classes do not do. As you experiment beyond the tutorial codes, you’ll probably also find
there are operator overloads and some other operations missing - try adding them in!

The Matrix4 class provides you with the capability of manipulating 4 by 4 square matrices - in
the second full tutorial you’ll see how these are used to position and rotate the objects you wish to
render on screen.

The Vector2, Vector3, and Vector4 classes deal with algebraic vectors, stored as floats. These are
useful for storing things like texture coordinates, positions in space, and colours - as well as provid-
ing linear algebra functions such as the dot product, the cross product, and normalisation functionality.

2



Finally, the Quaternion class adds the ability to manipulate quaternions to your projects. Quater-
nions are like 4 component vectors, but the values are combined in such a way as to encode an axis
and a rotation.

Class Hierarchy

Along with the math classes, the framework also provides classes to enable you to create a Window,
read from the Keyboard and Mouse, and calculate how much time has elapsed. In each tutorial, you
will a main.cpp file, within which you will have your main function. From here, a Window class is
initialised - this encapsulates all of the code required to get the Windows operating system to create
a Window suitable for rendering into. The creation of the Window class will create a Keyboard
and Mouse - these inherit from a common InputDevice class, and allow you to check which keys
and buttons have been pressed down, and see how much the mouse has moved. You’ll also find you
have access to a GameTimer, which allows you to see time how many milliseconds have passed since
the window was created. Finally, in each tutorial you’ll make a Renderer class, which includes an
example of how to implement the new functionality you learn about in each tutorial. The Renderer
class inherits from the OGLRenderer class, which creates the actual OpenGL context you need to
render, as well as provide some other simple rendering-related functions.

Data files

Shaders, Textures, and vertex data, are kept in the ../Shaders/, ../Textures/, and ../Meshes/ folders
of the framework, respectively. Although you’ll be writing all of the shaders for this module yourself,
you do get some textures, and some geometry, stored in the OBJ and MD5Mesh formats.

Additional Libraries

Simple OpenGL Image Library

http://www.lonesock.net/soil.html

In this tutorial series, you’ll build up C++ classes that will handle the loading of vertex and shader
data, as doing so will teach you a lot about the graphics pipeline. Textures though, are pretty much
just a big chunk of data, generally 24 or 32 bits per pixel, depending on whether there’s an alpha
channel or not. On top of that, some graphics file formats are compressed - TGA files are compressed
in an easily understood format known as Run Length Encoding, but something like a JPEG file uses
a much more complex compression format. We could cover texture loading in this tutorial series, but
you’d not actually learn a lot about graphics rendering in doing so. Instead, we’re going to use a small
library called SOIL - the Simple Opengl Image Library. This small library supports loading in (and

3



saving out!) a variety of common texture formats, taking away much of the pain of getting texture
data into OpenGL. SOIL lives in the ../SOIL/ folder of the framework download, and is added to the
framework solution via an include, and a pragma to link the SOIL static library.

1 #include "SOIL.h"

2 #pragma comment(lib , "SOIL.lib")

OGLRenderer.h

GL Extension Wranger

http://glew.sourceforge.net/

Since OpenGL was originally created, its functionality has been increased greatly. This has primar-
ily been through the use of extensions - the mechanism that allows an OpenGL implementation to
support more features than the standard core of OpenGL provides. Over time, many of these exten-
sions have become part of the OpenGL core functionality - for example, Vertex Buffers started as an
extension, and are required to fully implement the OpenGL 3 spec. Unfortunately, these exstensions
are not available by default on the Windows operating system due to the way the OpenGL API is
exposed. Fortunately, Windows does provide a mechanism for getting a function pointer to a specific
extension, via the wgl (often pronounced ’Wiggle’) functionality. So, we could get a function pointer
to the SwapInterval extension like so:

1 PFNWGLSWAPINTERVALEXTPROC SwapInterval;

2 SwapInterval = (PFNWGLSWAPINTERVALEXTPROC)

3 wglGetProcAddress("wglSwapIntervalEXT");

WGL example

Doesn’t look very nice, does it? Now imagine trying to do that for 10s of extensions! Fortunately,
there’s a library that’ll automatically take care of all of the nasty extension business, called the
GL Extension Wrangler, or GLEW for short. The files for GLEW are included in the framework
download, in the ../GLEW/ folder, and automatically added to the framework solution via an include
and a pragma.

AMD gDEBugger

http://developer.amd.com/tools/gDEBugger/Pages/default.aspx

AMD’s gDEBugger plugin for Visual Studio 2010 allows you to debug the OpenGL graphics
pipeline, and inspect what is currently loaded into graphics memory - handy for tracking down weird
errors! gDEBugger allows the use of breakpoints, but unlike when debugging your C++ code, you
cannot set graphical breakpoints just anywhere. What you can do though, is set gDEBugger to
break when a specific OpenGL command is added to the command queue. To aid in debugging, the
framework defines a macro, GL BREAKPOINT, that wraps around a little-used OpenGL command,
allowing you to set graphical breakpoints like so:

1 triangle ->Draw ();

2 glUseProgram (0);

3

4 GL_BREAKPOINT // Application will break before SwapBuffers is called

5 SwapBuffers ();

gDEBugger breakpoint example

4



Using the Window Class

The Window class encapsulates all of the code required to create a Microsoft Windows window,
suitable for rendering into. Multiple Windows can be opened in a single application, each with their
own Renderer. The first Window initialised will create a Mouse, Keyboard - each application has only
one Mouse and Keyboard instance. Each Window also has its own GameTimer class instance.

Functions

Window(string title, int sizeX, int sizeY, bool fullScreen): The constructor takes in 4 pa-
rameters - the first is a string, denoting the identifying text that will be displayed at the top of the
window. The next two parameters are the width and height of the window - note that this includes
the window surround and top bar, so the actual rendering area will be slightly smaller than this. The
final parameter is a bool, and determines whether the window will be fullscreen or not. If so, it will
attempt to create a fullscreen window - in such cases, sizeX and sizeY should match a resolution
supported by the display device, or the application is likely to fail.

UpdateWindow(): In order to update the enhanced input device functionality and check internal
windows messages, each Window should have UpdateWindow called once per frame. UpdateWindow
will return true if the close window widget has been pressed, or false otherwise.

SetRenderer(OGLRenderer &r):For a Window to output anything useful, it must have an OGLRen-
derer, or a subclass of it, attached. SetRenderer will attach the given OGLRenderer, and if necessary,
resize the output of the OGLRenderer to match the Window dimensions.

HasInitialised(): When a Window is constructed, it is possible for its basic initialisation and OS
integration to fail, leaving it unable to display. HasInitialised, if it returns false, denotes that this
initialisation has failed, and the program should exit.

LockMouseToWindow(bool lock): If LockMouseToWindow is called with a boolean argument
of true, the mouse pointer (whether visible or not) will be locked to the window area - useful if you
intend to have 1st person camera rotation in a windowed application. A value of false will free the
mouse pointer.

ShowOSPointer(bool show):An argument of false sent to this function will ’hide’ the windows
pointer when it is within the current Window dimensions. A value of true will show the mouse pointer.

GetScreenSize(): Returns a Vector2, containing the current Window dimensions.

GetKeyboard(): Returns a pointer to the static Keyboard object.

GetMouse():Returns a pointer to the static Mouse object.

GetTimer():Returns a pointer to the GameTimer object of this Window.

Using the GameTimer Class

The GameTimer class encapsulates the high precision timer of the operating system. Multiple Ga-
meTimer classes can be instantiated to keep track of multiple times.

Functions

GetMS(): Returns a float value containing the number of milliseconds that have passed since the
GameTimer was instantiated.

GetTimedMS(): Returns a float value containing the number of milliseconds since the last call
to GetTimedMS. The function is automatically triggered on class instantiation, making it always safe
to call to get a correct value.

5



Using the Mouse Class

The Mouse class encapsulates all of the Windows mouse functionality provided via the RAW API. It
can handle mice of up to 5 buttons, and supports mouse wheel movement. This class also features
various game specific features, like adjustable sensitivity, double click detection, and multiple frame
mouse button holds.

Functions

ButtonDown(MouseButton Button): Takes a single argument, of the MouseButton enumera-
tor type, and returns whether the mouse button was pressed in the previous update.

ButtonHeld(MouseButtons button): Takes a single argument, of the MouseButton enumer-
ator type, and returns whether the mouse button was pressed in multiple consecutive frames.

DoubleClicked(MouseButtons button): Takes a single argument, of the MouseButton enumer-
ator type, and returns whether the mouse button was double clicked in the previous frame.

GetRelativePosition(): Returns a Vector2, containing how much the mouse has moved since the
last update.

GetAbsolutePosition(): Returns a Vector2, containing the mouse pointer position, in screen coor-
dinates.

SetDoubleClickLimit(float msec):Sets how much time (in milliseconds) can pass between mouse
clicks while still counting as a double click. Higher values will create ’false’ double clicks from fast
’single clicks’, while values too low will make it difficult to trigger a double click.

WheelMoved(): This function returns true if the mousewheel has been moved in the last up-
date, false otherwise.

GetWheelMovement(): Returns a positive integer if the mousewheel has been moved upwards,
or a negative integer if it has been moved downwards.

SetMouseSensitivity(float amount): The values returned by GetRelativePosition are multiplied
by this float value, scaling mouse movement per frame. So lower values will equate to more mouse
movement required to rotate the camera, and vice versa.

Enums

The Mouse class relies upon an enumerator to equate integers to physical mouse buttons, called
MouseButton. It can have the following values: MOUSE LEFT, MOUSE RIGHT, MOUSE MIDDLE,
MOUSE FOUR, MOUSE FIVE.

Using the Keyboard Class

The Keyboard class encapsulates all of the Windows keyboard functionality provided via the RAW
API. It’s pretty simple, but can detect keys held across multiple updates.

Functions

KeyDown(KeyboardKeys key): Takes a single argument, of the KeyboardKeys enumerator type,
and returns whether the key was pressed in the previous update.

KeyHeld(KeyboardKeys key): Takes a single argument, of the KeyboardKeys enumerator type,
and returns whether the key was pressed in multiple consecutive frames.

6



KeyTriggered(KeyboardKeys key): Takes a single argument, of the KeyboardKeys enumer-
ator type, and returns whether the key was pressed in the latest update, but was not held prior to
that. Useful for detecting the first frame in which a key has been pressed for events that should be
triggered only once per press, like throwing a grenade etc.

Enums

The Keyboard class relies upon an enumerator to equate integers to physical keyboard keys, called
KeyboardKeys. It can have the following values: KEYBOARD 0 - KEYBOARD 9, KEYBOARD A
- KEYBOARD Z, KEYBOARD NUMPAD0 - KEYBOARD NUMPAD9, KEYBOARD F1 - KEY-
BOARD F10, KEYBOARD LSHIFT, KEYBOARD RSHIFT, KEYBOARD LCONTROL,
KEYBOARD RCONTROL, KEYBOARD SPACE.

Credits

The following files are from id Software’s Doom3 title -
../Meshes/HellKnight.md5Mesh
../Meshes/idle2.md5Anim
../Textures/gob h.tga
../Textures/gob2 h.tga
../Textures/hellknight.tga
../Textures/hellknight local.tga
../Textures/tongue.tga
../Textures/tongue local.tga

The ’rusted’ Cube Map textures in the ../Meshes/ folder come courtesy of http://www.katsbits.com

7


